RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2007, том 9, номер 1, страницы 30–37 (Mi vmj85)

Эта публикация цитируется в 3 статьях

A note on weakly $\aleph_1$-separable $p$-groups

P. V. Danchev

Plovdiv State University «Paissii Hilendarski», Plovdiv, Bulgaria

Аннотация: It is well-known by Hill-Griffith that there exist $\aleph_1$-separable $p$-primary groups which are not direct sums of cycles. A problem of challenging interest, mainly due to Hill (Rocky Mount. J. Math., 1971), is under what extra circumstances on the group structure this holds untrue, that is every $\aleph_1$-separable $p$-group is a direct sum of cyclic groups. We prove here that any weakly $\aleph_1$-separable $p$-group of cardinality not exceeding $\aleph_1$ is quasi-complete precisely when it is a bounded direct sum of cycles, thus partly answering the posed question in the affirmative.

Ключевые слова: weakly $\aleph_1$-separable groups, quasi-complete groups, torsion-complete groups, bounded groups.

УДК: 512.742

MSC: 20K 10

Поступила в редакцию: 03.07.2006

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024