Аннотация:
Рассмотрена задача Коши для одномерного гиперболического уравнения, младший коэффициент и правая часть которого осциллируют по времени с большой частотой, причем амплитуда младшего коэффициента мала. Исследован вопрос о восстановлении не зависящих от пространственной переменной сомножителей этих быстро осциллирующих функций по заданной в некоторой точке пространства частичной асимптотике решения. Для различных эволюционных уравнений многочисленные задачи об определении неизвестных источника и коэффициентов без предположения их быстрой осцилляции исследованы в классической теории обратных задач, где в дополнительном условии (условии переопределения) фигурирует точное решение прямой задачи. Вместе с тем уравнения с быстро осциллирующими данными нередко встречаются при моделировании физических, химических и других процессов, протекающих в средах, подверженных высокочастотному воздействию электромагнитных, акустических, вибрационных и т. п. полей. Это свидетельствует об актуальности задач теории возмущений о восстановлении неизвестных функций в высокочастотных уравнениях. В работе используется неклассический алгоритм решения такого рода задач, который лежит на стыке двух дисциплин — асимптотические методы и обратные задачи. В условии переопределения при этом участвует не (точное) решение, как в классике, а лишь его частичная асимптотика определенной длины.
Ключевые слова:гиперболическое уравнение, быстро осциллирующие данные, асимптотические методы, обратная задача.