Аннотация:
Одним из мощных асимптотических методов теории дифференциальных уравнений является метод усреднения, который связывают с именами известных исследователей Н. М. Крылова и Н. Н. Боголюбова. Этот метод глубоко разработан не только для обыкновенных дифференциальных и интегральных уравнений, но и для многих классов уравнений в частных производных. Однако для гиперболических систем дифференциальных уравнений метод усреднения изучен еще недостаточно. Для полулинейных гиперболических систем он обоснован в работах Ю. А. Митропольского, Г. П. Хомы и некоторых других авторов. Кроме того, ранее рядом авторов был предложен и обоснован алгоритм построения полных асимптотик решений таких систем; решение усредненной задачи является при этом главным членом асимптотики. В данной работе исследуется задача Коши в многомерном пространственно-временном слое для гиперболической системы квазилинейных дифференциальных уравнений первого порядка с быстро осциллирующими по времени слагаемыми. Среди такого рода слагаемых правой части могут быть большие — пропорциональные корню квадратному из высокой частоты осцилляций, причем большие слагаемые имеют по быстрой переменной (произведение частоты и времени) нулевое среднее. Спецификой рассматриваемой системы является то обстоятельство, что слагаемые ее уравнений не зависят явно от пространственных переменных. Для указанной задачи Коши построена предельная (усредненная) при стремлении частоты осцилляций к бесконечности задача и обоснован предельный переход (метод усреднения). Последнее означает доказательство однозначной разрешимости исходной (возмущенной) задачи и обоснование равномерной во всем слое асимптотической близости решений исходной (возмущенной) и усредненной задач.
Ключевые слова:многомерная гиперболическая система квазилинейных уравнений, большие быстро осциллирующие по времени слагаемые, задача Коши, обоснование метода усреднения.