Аннотация:
Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики.
Ключевые слова:обыкновенные дифференциальные уравнения; приближенные аналитические методы; численные методы; ортогональные разложения; смещенные ряды Чебышёва; квадратурные формулы Маркова; полиномиальная аппроксимация; контроль точности; оценки ошибок; автоматический выбор шага.