Аннотация:
В гравиразведке важнейшей является задача продолжения потенциальных полей с поверхности Земли вглубь. На основе решения такой задачи идентифицируется положение аномалий гравитационного поля. Приближенное решение задачи продолжения потенциальных полей часто базируется на решении интегрального уравнения первого рода с применением тех или иных процедур регуляризации. Аналогичный подход используется в нашей работе, когда продолженное поле представляется в виде потенциала простого слоя или его вертикальной производной. Плотность эквивалентного простого слоя положительна (отрицательна) для положительных (отрицательных) аномалий плотности при условии, что поверхность эквивалентного потенциала простого слоя включает все аномалии. Учет этого свойства является ключевой особенностью предложенного вычислительного алгоритма продолжения потенциальных полей в сторону аномалий. Определение неотрицательной плотности потенциала простого слоя базируется на NNLS (Non-Negative Least Squares) методе. Эффективность разработанного вычислительного алгоритма иллюстрируется расчетами для двумерных задач.
Ключевые слова:гравитационное аномальное поле, метод интегральных уравнений, потенциал простого слоя, метод наименьших квадратов.
УДК:519.63
Поступила в редакцию: 15.11.2023 Принята в печать: 07.12.2023