RUS  ENG
Полная версия
ЖУРНАЛЫ // Вычислительные методы и программирование // Архив

Выч. мет. программирование, 2011, том 12, выпуск 3, страницы 348–361 (Mi vmp202)

Эта публикация цитируется в 4 статьях

Вычислительные методы и приложения

Применение разложений Лагранжа–Бюрмана для численного интегрирования уравнений невязкого газа

Е. В. Ворожцов

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН

Аннотация: Предложены явные разностные схемы второго и более высоких порядков точности для гиперболических законов сохранения с применением разложений сеточных функций в ряды Лагранжа–Бюрмана. Приведены результаты расчетов одно- и двумерных тестовых задач, показывающие, что в случае уравнений Эйлера невязкого сжимаемого газа получаются квазимонотонные профили численных решений. При счете стационарных двумерных задач методом установления предлагаемые схемы требуют в шесть раз меньшее машинное время, чем известные TVD-схемы.

Ключевые слова: гиперболические законы сохранения; разложения Лагранжа-Бюрмана; разностные методы.

УДК: 518:517.949.8; 533.6.011



© МИАН, 2024