Аннотация:
Обратная задача 3D ультразвуковой томографии рассматривается в статье как нелинейная коэффициентная обратная задача для уравнения гиперболического типа. Используемая математическая модель хорошо описывает как дифракционные эффекты, так и поглощение ультразвука в неоднородной среде. В рассматриваемой постановке реконструируется скорость распространения акустической волны как функция трех координат. Количество неизвестных в нелинейной обратной задаче составляет порядка 50 миллионов. Разработанные итерационные алгоритмы решения обратной задачи ориентированы на использование GPU-кластеров. Основным результатом работы является апробация алгоритмов на экспериментальных данных. В эксперименте использовался стенд для 3D ультразвуковых томографических исследований, разработанный в МГУ имени М.В. Ломоносова. Акустические параметры фантомов близки к акустическим параметрам мягких тканей человека. Объем экспериментальных данных составляет порядка 3 ГБ. Интерпретация данных эксперимента позволила не только продемонстрировать эффективность разработанных алгоритмов, но и подтвердила адекватность математической модели реальности. Для реализации разработанных численных алгоритмов использовался графический кластер суперкомпьютера “Ломоносов-2”.