Аннотация:
Доказывается, что любая функция $f(x)$, непрерывная на действительной оси $\mathbb{R}$ и стремящаяся к нулю
при $x\to\infty$, может быть с любой точностью равномерно на $\mathbb{R}$ приближена наипростейшими дробями. Доказывается также, что любая последовательность $\{dn\}^\infty_{n=0}$ неотрицательных чисел, строго убывающая вплоть до нуля:
$d_n>0\Longrightarrow d_n>d_{n+1}$, является последовательностью наименьших уклонений от множеств наипростейших дробей степени не выше $n$ для некоторой функции $f$ с указанными свойствами. Исследуется точность этих результатов.
Библиогр. 7.