Аннотация:
Для суммируемости почти всюду разложений по обобщенным ортоподобным неотрицательным системам доказывается равносильность метода суммирования Абеля–Пуассона и положительных методов суммирования Чезаро. Для метода $(C,1)$ дается критерий суммируемости почти всюду последовательности частичных интегралов. Для введенных чезаровских средних $\sigma^m_n$ по обобщенным ортоподобным неотрицательным системам доказана законность перестановки предельных переходов.
Библиогр. 8.