RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Московского университета. Серия 1: Математика. Механика // Архив

Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1998, номер 2, страницы 38–42 (Mi vmumm1765)

Эта публикация цитируется в 1 статье

Математика

О существовании хорошего дивизора для расслоения на поверхности Дель-Пеццо

С. А. Кудрявцев


Аннотация: В работе доказывается следующая теорема. Пусть $X$ – трехмерное проективное многообразие с каноническими горенштейновыми особенностями, обладающее таким проективным морфизмом $\varphi\colon X\to C$ на гладкую кривую $C$, что дивизор $-K_X\varphi$-обилен. Тогда для достаточно обильного дивизора $H\in\operatorname{Pic}(C)$ общий дивизор из линейной системы $|-K_X+\varphi^*H|$ приведен, неприводим и имеет не хуже чем дювалевские особенности.
Библиогр. 6.

УДК: 512.776

Поступила в редакцию: 19.03.1997



Реферативные базы данных:


© МИАН, 2024