Аннотация:
В ограниченной области $\Omega\subset\mathbf{R}^n$с границей, состоящей из двух компонент $\Gamma_1$ и $\Gamma_2$, рассматривается уравнение Лапласа. На $\Gamma_1$ ставятся граничные условия $\partial u/\partial\nu_{\Gamma_1}= 0,u|_{\Gamma_1}=v$, где $\nu$ – внешняя нормаль к $\Gamma_1$. Доказана разрешимость этой задачи для $v$ принадлежащих некоторому плотному множеству $V$ в $L_2(\Gamma_2)$. Предложен метод построения $v\in V$, сводящийся к решению корректной краевой задачи. Указанные результаты получены с помощью исследования некоторой экстремальной задачи, являющейся регуляризацией рассматриваемой задачи Коши для оператора Лапласа.
Библиогр. 5 .