RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Московского университета. Серия 1: Математика. Механика // Архив

Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1982, номер 6, страницы 62–70 (Mi vmumm3591)

Математика

Об усреднении системы теории упругости с почти-периодическими коэффициентами

В. В. Жиков, О. А. Олейник


Аннотация: Для системы линейной теории упругости $L_\varepsilon(u^\varepsilon)=f$ с коэффициентами вида $a_{ij,kh}\bigl(\frac{x}{\varepsilon}\bigr)$, где $\varepsilon$ – малый параметр, $\varepsilon=\operatorname{const}>0$, $a_{ij,kh}(y)$ – почти-периодическая функция в смысле Бора, доказано, что $u_\varepsilon\to u$ при $\varepsilon\to0$ в норме $L^2(\Omega)$, $L_\varepsilon(u^\varepsilon)=f$, $\hat L(u)=f$ в $\Omega$, $u_\varepsilon=0$, $u=0$ на границе $\Omega$ и система $\hat L(u)=f$ является системой теории упругости с постоянными коэффициентами. Тензор напряжения системы $L_\varepsilon(u^\varepsilon)=f$ также сходится при $\varepsilon\to0$ к тензору напряжения для усредненной системы $\hat L(u)=f$.
Библиогр. 8.

УДК: 517.9

Поступила в редакцию: 10.06.1982



Реферативные базы данных:


© МИАН, 2024