Аннотация:
Размерность Гельфанда–Кириллова $l$-порожденных общих матриц равна $(l-1)n^2+1.$ По теореме Амицура–Левицкого наименьшая степень тождества в этой алгебре равна $2n$. По этой причине существенная высота алгебры $A$ — $l$-порожденной $PI$-алгебры с тождеством степени $n$ — над любым множеством слов больше $(l-1)n^2/4 + 1.$ В данной работе представлено доказательство того, что при конечной размерности Гельфанда–Кириллова алгебры $A$ количество попарно лексикографически сравнимых подслов с периодом $(n-1)$ в каждом мономе $A$ не больше $(l-2)(n-1).$ Случай слов с периодом длины $2$ обобщается до доказательства экспоненциальной оценки в теореме Ширшова.