Аннотация:
В работе рассматривается величина
$L_N(r,q)=\inf\limits_{K_N}\biggl\|\biggl(\sum\limits_{k\in K_N}e^{i(k,t)}\biggr)^{(r)}\biggr\|_q$, где $K_N\subset \mathbf Z^n$ – произвольное множество из $N$ гармоник, $r=(r_1,\dots,r_n)\in\mathbf R^n_{+}$ – порядок смешанной производной по Вейлю, $1<q<\infty$. Порядок величины $L_N(r,q)$ определяется при “малых” гладкостях, т.е. $0<\min\{r_1,\dots,r_n\}\leq\dfrac1q$, $2\leq q<\infty$. При “больших” гладкостях и векторном $t=(t_1,\dots,t_n)$ эта величина найдена ранее Э. М. Галеевым. Для скалярной величины $t$$l_N(r,q)$ вычислено в работах В. Е. Майорова, С. В. Конягина, Э. С. Белинского.
Библиогр. 10.