Аннотация:
Изучается задача о существовании периодических решений квазилинейного уравнения вынужденных колебаний двутавровой балки, один конец которой закреплен, а второй шарнирно оперт. Исследуются свойства дифференциального оператора и приводится теорема о существовании счетного числа решений, если нелинейное слагаемое имеет степенной рост относительно неизвестной функции.
Ключевые слова:уравнение колебаний балки, периодические решения, собственные значения, ряд Фурье, вариационный метод.