RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Московского университета. Серия 1: Математика. Механика // Архив

Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, номер 2, страницы 39–47 (Mi vmumm4458)

Эта публикация цитируется в 1 статье

Механика

Теория пятимерных упругопластических процессов средней кривизны

И. Н. Молодцов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Аннотация: Рассмотрен вариант определяющих соотношений для описания процессов сложного нагружения с траекториями деформации произвольной размерности. Получены векторные определяющие соотношения и новый метод математического моделирования пятимерных процессов сложного нагружения, аттестованный на двух- и трехмерных процессах постоянной кривизны. Определяющие соотношения описывают этапы как активного нагружения, так и разгрузки. Получены явные представления вектора напряжений в произвольном процессе деформации. Показано, что параметрами состояния модели в пятимерном пространстве девиатора деформации являются четыре угла из представления направляющего вектора напряжений в репере Френе, но не прямо, а в форме четырех специальных функций. Эти функции названы функциями Р.А. Васина. Также рассмотрен процесс сложного нагружения по трехмерной винтовой траектории деформации, где после нырка и последующей догрузки реализуется установившийся процесс нагружения с уравнениями, практически повторяющими геометрию траектории деформации. Аналогичные результаты получены и для пятимерных винтовых траекторий деформации. Отсюда делается вывод, что для данного класса процессов имеет место соответствие геометрий траектории деформации и траектории нагружения.

Ключевые слова: сложное нагружение, определяющие соотношения, траектория деформаций и отклик, теорема изоморфизма, калибровка функционалов.

УДК: 539.3

Поступила в редакцию: 08.09.2021


 Англоязычная версия: Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2022, 77:2, 38–46

Реферативные базы данных:


© МИАН, 2024