Асимптотика кривых ползучести, порождаемых нелинейной теорией наследственности Работнова при кусочно-постоянных нагружениях, и условия затухания памяти
Аннотация:
При минимальных априорных ограничениях на две материальные функции нелинейного определяющего соотношения Работнова аналитически исследована зависимость асимптотики кривых ползучести при произвольных ступенчатых нагружениях от характеристик обеих материальных функций и параметров программ нагружения. Получены условия стремления к нулю при $t\rightarrow\infty$ их отклонения от обычной кривой ползучести для мгновенного нагружения, установлена ключевая роль величины предела производной функции ползучести на бесконечности в накоплении пластической (остаточной) деформации. Выявлены отличия и дополнительные возможности нелинейного соотношения Работнова по сравнению с линейным интегральным соотношением вязкоупругости и унаследованные от него свойства.