Аннотация:
Рассматривается проблема устойчивости вычисления параметров затухающих апериодических процессов второго порядка на основе результатов наблюдений. Описывается численный метод определения параметров апериодического процесса второго порядка, в основе которого лежит итерационная процедура вычисления коэффициентов разностного уравнения. Получены неравенства, позволяющие с учётом априорно известных границ изменения параметров исследуемого апериодического процесса обеспечить устойчивость разностного уравнения. Сформулирована и доказана теорема о достаточном условии устойчивости системы нормальных уравнений при решении задачи среднеквадратичного оценивания коэффициентов разностного уравнения. Полученные результаты имеют большое практическое значение и могут быть использованы при выборе периода дискретизации экспериментальной кривой, описывающей наблюдаемый апериодический процесс второго порядка на выходе системы.
Ключевые слова:апериодические процессы второго порядка, разностные уравнения, итерационная процедура, среднеквадратичное приближение, устойчивость разностного уравнения второго порядка.