RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013, выпуск 1(30), страницы 305–314 (Mi vsgtu1127)

Труды Третьей Международной конференции «Математическая физика и её приложения»
Сложные системы, квантовая механика и теория информации

Note on complexity of quantum transmission processes

N. Watanabe

Science University of Tokyo, Noda City, Chiba 278-8510, Japan

Аннотация: In 1989, Ohya propose a new concept, so-called Information Dynamics (ID), to investigate complex systems according to two kinds of view points. One is the dynamics of state change and another is measure of complexity. In ID, two complexities $ C^{S} $ and $ T^{S} $ are introduced. $ C^{S} $ is a measure for complexity of system itself, and $ T^{S} $ is a measure for dynamical change of states, which is called a transmitted complexity. An example of these complexities of ID is entropy for information transmission processes. The study of complexity is strongly related to the study of entropy theory for classical and quantum systems. The quantum entropy was introduced by von Neumann around 1932, which describes the amount of information of the quantum state itself. It was extended by Ohya for C*-systems before CNT entropy. The quantum relative entropy was first defined by Umegaki for $ \sigma $-finite von Neumann algebras, which was extended by Araki and Uhlmann for general von Neumann algebras and *-algebras, respectively. By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to formulate the mutual entropy in a complete quantum mechanical system (i.e., input state, output state and channel are all quantum mechanical) describing the amount of information correctly transmitted through the quantum channel. In this paper, we briefly review the entropic complexities for classical and quantum systems. We introduce some complexities by means of entropy functionals in order to treat the transmission processes consistently. We apply the general frames of quantum communication to the Gaussian communication processes. Finally, we discuss about a construction of compound states including quantum correlations.

Ключевые слова: quantum communication channel, von Neumann entropy, $\mathcal{S}$-mixing entropy, Ohya mutual entropy, C*-system.

УДК: 004.38:530.145

MSC: Primary 81P99; Secondary 81V80, 94A50

Поступила в редакцию 14/XI/2012
в окончательном варианте – 21/I/2013

Язык публикации: английский

DOI: 10.14498/vsgtu1127



Реферативные базы данных:


© МИАН, 2024