Аннотация:
Разработан аналитический метод решения нелинейной стохастической задачи ползучести плоскости с учётом повреждённости материала и третьей стадии ползучести. Определяющие соотношения ползучести принимаются в соответствии с энергетическим вариантом нелинейной теории вязкого течения в стохастической форме. Стохастичность материала определяется двумя случайными функциями координат $x_1$ и $x_2$. Произведена линеаризация задачи относительно номинальных напряжений на основе метода малого параметра. Найдены дисперсии случайного поля напряжений в предположении, что процессы ползучести и накопления повреждённости являются независимыми. В качестве примера рассмотрен случай, когда плоскость растягивается в двух ортогональных направлениях пропорционально некоторому параметру. Приведённый анализ показал, что на третьей стадии ползучести происходит увеличение величины флуктуации напряжений по сравнению с величиной на стадии установившейся ползучести.