Аннотация:
Рассматривается редуцированная спектральная задача для оператора Коши–Римана с нелокальными краевыми условиями к линейному интегральному уравнению Фредгольма второго рода с непрерывным ядром. Соответствующий детерминант Фредгольма определён при всех спектральных параметрах $\lambda$, кроме $\lambda \neq 2,$$\mathop{\rm Re}\lambda \neq 1.$ Нахождение нулей определителя Фредгольма, записанного в такой форме, неэффективно, поскольку он не является целой функцией от спектрального параметра, а его главная часть не выделена. Исследована структура ядра оператора. Для приближённого решения интегрального уравнения применены результаты работ И. Акбергенова, где даны оценки абсолютной величины разности между точным и приближенным решениями интегрального уравнения. Охарактеризованы спектральные параметры, при которых неоднородная краевая задача со смещением для уравнений Коши–Римана всюду разрешима в классе непрерывных функций на единичном круге. Показана явная конструкция, аппроксимирующая решение неоднородной краевой задачи.
Ключевые слова:оператор Коши–Римана, пространство непрерывных функций, фредгольмовость, резольвентное множество, задача со смещением, ядро, детерминант Фредгольма.