Аннотация:
Уравнения соболевского типа в настоящее время составляют обширную область среди неклассических уравнений математической физики. Неклассическими называют те уравнения математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамки одного из классических типов — эллиптического, параболического или гиперболического. В данной работе показано существование единственного оптимального и жёсткого управлений решениями задачи Шоуолтера–Сидорова для нестационарного операторно-дифференциального уравнения, неразрешенного относительно производной по времени. Нестационарность уравнения рассмотрена в виде произведения одного из операторов уравнения и скалярной функции, зависящей от времени, а свойства операторов таковы, что стационарное уравнение обладает разрешающей сильно непрерывной вырожденной полугруппой. Статья, кроме введения и списка литературы, содержит две части. В первой части приводятся необходимые сведения теории относительно $p$-радиальных операторов, во второй части содержится основной результат статьи.
Ключевые слова:оптимальное управление, жесткое управление, нестационарные уравнения соболевского типа, относительно радиальный случай.