Аннотация:
Интегро-дифференциальные уравнения имеют особенности в вопросе однозначной разрешимости. Вопросы разрешимости линейных обратных задач для дифференциальных уравнений в частных производных изучены многими авторами. В работе рассматривается нелинейная обратная задача, где функция восстановления в заданное интегрально-дифференциальное уравнение входит нелинейно и с запаздыванием. Относительно восстанавливаемой функции данное уравнение является неявным функционально-интегральным уравнением Фредгольма. Изучается однозначная разрешимость нелинейной обратной задачи для интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка. Сначала модифицируется метод вырожденного ядра интегрального уравнения Фредгольма для случая интегро-дифференциальных уравнений Фредгольма в частных производных третьего порядка. При решении нелинейной обратной задачи относительно восстанавливаемой функции получится нелинейное интегральное уравнение Вольтерра первого рода, которое с помощью специального неклассического интегрального преобразования сводится к нелинейному интегральному уравнению Вольтерра второго рода. Поскольку восстанавливаемая функция нелинейно входит в заданное интегро-дифференциальное уравнение и имеет запаздывание, задание начального условия по отношению к восстанавливаемой функции обеспечивает единственность решения нелинейного интегрального уравнения первого рода и определяет значение неизвестной восстанавливаемой функции на начальном отрезке. Далее используется метод последовательных приближений в сочетании с методом сжимающих отображений.
Ключевые слова:нелинейная обратная задача, уравнение в частных производных третьего порядка, интегро-дифференциальное уравнение, интегральное преобразование, метод последовательных приближений.