Аннотация:
Для уравнения смешанного типа с сингулярным коэффициентом при младшей производной и спектральным параметром в области, гиперболическая часть которой — вертикальная полуполоса, а эллиптическая — прямоугольник, поставлена нелокальная задача с условием, связывающим значения искомой функции на правой и левой границах полуполосы и прямоугольника. При этом на линии изменения типа от искомой функции требуется лишь непрерывность. Для исследования поставленной задачи применен спектральный метод. Доказаны теоремы единственности и существования решения исследуемой задачи. Решение построено в виде разложения в биортогональный ряд по одной системе тригонометрических функций, предложенной в работах Е. И. Моисеева при этом, коэффициенты разложения получены как решения соответствующих систем ОДУ. Дано обоснование равномерной сходимости соответствующих рядов при определенных ограничениях на условия задачи.
Ключевые слова:уравнение смешанного типа, уравнение с сингулярным коэффициентом, биортогональный ряд, базис Рисса, функции Бесселя.