RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2015, том 19, номер 1, страницы 44–62 (Mi vsgtu1386)

Эта публикация цитируется в 6 статьях

Дифференциальные уравнения и математическая физика

О решениях эллиптических уравнений с нестепенными нелинейностями в неограниченных областях

Л. М. Кожевникова, А. А. Хаджи

Башкирский государственный университет, Стерлитамакский филиал, г.  Стерлитамак, 453103, Россия

Аннотация: В работе выделен некоторый класс анизотропных эллиптических уравнений второго порядка дивергентного вида с младшими членами с нестепенными нелинейностями
$$\sum\limits_{\alpha=1}^{n}(a_{\alpha}({\boldsymbol x},u,\nabla u))_{x_{\alpha}}-a_0({\boldsymbol x},u,\nabla u)=0.$$
На каратеодориевы функции, входящие в уравнение, накладывается условие совокупной монотонности. Ограничения на рост функций формулируются в терминах специального класса выпуклых функций. Эти требования обеспечивают ограниченность, коэрцитивность, монотонность и семинепрерывность соответствующего эллиптического оператора. Для рассматриваемых уравнений с нестепенными нелинейностями исследованы качественные свойства решений задачи Дирихле в неограниченных областях $\Omega\subset \mathbb{R}_n,\;n\geq 2$. Установлены существование и единственность обобщённых решений в анизотропных пространствах Соболева–Орлича. Кроме того, для произвольных неограниченных областей обобщены теоремы вложения анизотропных пространств Соболева–Орлича. Это позволило доказать глобальную ограниченность решений задачи Дирихле. Использована оригинальная геометрическая характеристика для неограниченных областей, расположенных вдоль выделенной оси. В терминах этой характеристики установлена экспоненциальная оценка скорости убывания на бесконечности решений рассматриваемой задачи с финитными данными.

Ключевые слова: анизотропное эллиптическое уравнение, пространство Соболева–Орлича, нестепенные нелинейности, существование решения, неограниченная область, ограниченность решения, убывание решения.

УДК: 517.956.25

MSC: 35J62, 35J25, 35J15

Поступила в редакцию 15/XII/2014
в окончательном варианте – 13/II/2015

DOI: 10.14498/vsgtu1386



Реферативные базы данных:


© МИАН, 2024