Аннотация:
Показано, что введенная автором система дифференциальных уравнений в частных производных второго порядка является наиболее общей системой. Из данной системы можно вывести все системы, решениями которых являются гипергеометрические функций двух переменных со списка Горна и биортогональные системы многочленов Ш. Эрмита и П. Аппеля. При этом основным аппаратом исследования биортогональных многочленов двух переменных являются специальные функции двух переменных. Полученная система гипергеометрического типа позволяет осуществить единый подход к построению систем биортогональных многочленов. Установлены всевозможные особые кривые изучаемой системы. Существование регулярных решений установлено методом Фробениуса–Латышевой.
Ключевые слова:особые кривые, система гипергеометрического типа, биортогональные многочлены, условия совместности, подранг.