Аннотация:
В представленной статье рассмотрены три задачи для гиперболического уравнения в характеристической области на плоскости. В обсуждаемых задачах хотя бы одно из условий Гурса заменено на нелокальное условие на соответствующей характеристике. Нелокальные условия представляют собой линейную комбинацию нормальных производных в точках на противоположных характеристиках. В случае замены одного условия решение осуществляется сведением к задаче Гурса, для которой оно существует и единственно. При этом для нахождения неизвестного условия Гурса автор получает интегральное уравнение, которое переписывает в операторной форме и находит случаи его однозначной разрешимости. Для доказательства однозначной разрешимости упомянутого уравнения автор показывает непрерывность линейного оператора и то, что некоторая его степень является сжимающим отображением. Известно, что в этом случае искомое условие Гурса можно записать в виде ряда Неймана. Подробно рассматривается только одна из поставленных задач, но для обеих сформулированы теоремы об однозначной разрешимости. Если же заменены два условия, единственность решения в предположении, что оно существует, доказывается методом априорных оценок. Для этого используются скалярное произведение и норма в пространстве $L_2$. В результате были получены условия на коэффициенты гиперболического уравнения, которые обеспечивают единственность решения задачи. После этого приведен пример, подтверждающий, что полученные условия являются существенными. А именно, построено уравнение, коэффициенты которого не удовлетворяют условиям последней теоремы, заданы условия на характеристиках и построено ненулевое решение
Ключевые слова:гиперболическое уравнение, нелокальные условия, задача со смещениями.