Аннотация:
Изучена граничная задача Шварца для $J$-аналитических функций. Они представляют собой решения линейной комплексной системы дифференциальных уравнений в частных производных первого порядка. Рассмотрен тот случай, когда действительная и мнимая части матрицы $J$ приводятся к треугольному виду одним и тем же комплексным преобразованием. В основной теореме доказан критерий для собственных чисел матрицы $J$, при выполнении которого в плоских областях, ограниченных контуром Ляпунова, решение задачи Шварца существует и единственно. Так же получена равносильная форма данного критерия, которая во многих случаях более удобна для проверки. При доказательстве теоремы используются известные факты о граничных свойствах $\lambda$-голоморфных функций. Само доказательство основано на методе прямой и обратной редукции задачи Шварца к задаче Дирихле для вещественных эллиптических систем в частных производных второго порядка. Построены примеры матриц, для которых указанный критерий выполнен.