RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016, том 20, номер 4, страницы 730–738 (Mi vsgtu1496)

Математическое моделирование, численные методы и комплексы программ

Об одной вычислительной реализации блочного метода Гаусса–Зейделя для нормальных систем уравнений

А. И. Жданов, Е. Ю. Богданова

Самарский государственный технический университет, г. Самара, 443100, Россия

Аннотация: Статья посвящена модификации блочного варианта метода Гаусса–Зейделя для нормальных систем уравнений, который является одним из достаточно эффективных методов решения, в общем случае переопределенных, систем линейных алгебраических уравнений большой размерности. Основным недостатком методов, основанных на нормальных системах уравнений, является тот факт, что число обусловленности нормальной системы равно квадрату числа обусловленности исходной задачи. Этот факт отрицательно влияет на скорость сходимости итерационных методов, основанных на нормальных системах уравнений. Для повышения скорости сходимости итерационных методов, основанных на нормальных системах уравнений, при решении плохо обусловленных задач в настоящее время используются различные варианты предобуславливателей, позволяющие снизить число обусловленности исходной системы уравнений. Однако универсального предобуславливателя для всех задач не существует. Одним из эффективных подходов, позволяющих повысить скорость сходимости итерационного метода Гаусса–Зейделя для нормальных систем уравнений, является использование его блочного варианта. Недостатком блочного метода Гаусса–Зейделя для нормальных систем является тот факт, что на каждой итерации необходимо вычислять псевдообратную матрицу. Известно, что нахождение псевдообратной матрицы является достаточно сложной вычислительной процедурой. В настоящей работе предлагается процедуру псевдообращения матрицы заменить на задачу решения нормальных систем уравнений методом Холецкого. Нормальные уравнения, возникающие на каждой итерации метода Гаусса–Зейделя, имеют сравнительно невысокую размерность по сравнению с исходной системой. Приводятся результаты вычислительных экспериментов, демонстрирующие эффективность предлагаемого подхода.

Ключевые слова: нормальные уравнения, блочный метод Гаусса–Зейделя, метод Холецкого, линейные алгебраические системы большой размерности.

УДК: 519.612

MSC: 65F10

Поступила в редакцию 20/VI/2016
в окончательном варианте – 02/IX/2016

DOI: 10.14498/vsgtu1496



Реферативные базы данных:


© МИАН, 2024