RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016, том 20, номер 4, страницы 589–602 (Mi vsgtu1501)

Эта публикация цитируется в 3 статьях

Дифференциальные уравнения и математическая физика

Нелокальная краевая задача для $B$-гиперболического уравнения в прямоугольной области

Н. В. Зайцева

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

Аннотация: Для гиперболического уравнения с оператором Бесселя поставлена начально-граничная задача с интегральным нелокальным условием первого рода в прямоугольной области. Поставленная задача с нелокальным интегральным условием первого рода эквивалентно сведена к локальной начально-граничной задаче со смешанными краевыми условиями первого и третьего рода. Методом спектрального анализа доказаны теоремы единственности и существования решения эквивалентной задачи. Решение построено в явном виде в виде ряда Фурье–Бесселя и приведено обоснование сходимости ряда в классе регулярных решений. Доказательство единственности решения эквивалентной задачи проводится на основании полноты системы собственных функций соответствующей одномерной задачи на собственные значения в пространстве квадратично суммируемых функций с весом. Для доказательства существования решения эквивалентной задачи используются оценки коэффициентов ряда и системы собственных функций, которые установлены на основании асимптотических формул для функции Бесселя первого рода при больших значениях аргумента и нулей этой функции. Получены достаточные условия относительно начальных условий, которые гарантируют сходимость построенного ряда в классе регулярных решений. Показана однозначная разрешимость первоначальной задачи.

Ключевые слова: гиперболическое уравнение, сингулярный коэффициент, нелокальное интегральное условие, единственность, существование, ряд Фурье–Бесселя, равномерная сходимость.

УДК: 517.956.3

MSC: 35L20, 35L81

Поступила в редакцию 12/VII/2016
в окончательном варианте – 12/XII/2016

DOI: 10.14498/vsgtu1501



Реферативные базы данных:


© МИАН, 2024