RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2018, том 22, номер 1, страницы 65–95 (Mi vsgtu1543)

Эта публикация цитируется в 10 статьях

Механика деформируемого твердого тела

Анализ свойств кривых ползучести с произвольной начальной стадией нагружения, порождаемых линейной теорией наследственности

А. В. Хохлов

Московский государственный университет имени М. В. Ломоносова, Научно-исследовательский институт механики, г. Москва, 119192, Россия

Аннотация: Выведено уравнение семейства кривых ползучести с произвольной неубывающей программой нагружения на начальной стадии, порождаемых линейным интегральным определяющим соотношением вязкоупругости Больцмана–Вольтерры с произвольной функцией ползучести (релаксации), аналитически изучены их общие качественные свойства и влияние на них длительности и формы начальной стадии нагружения и свойств функций ползучести. Исследованы интервалы монотонности и выпуклости кривых ползучести, их асимптотики, отклонения друг от друга кривых с разными начальными стадиями нагружения до заданного уровня напряжения, условия сходимости к нулю их отклонения от кривых ползучести при мгновенном нагружении с неограниченным увеличением времени (условия затухания памяти) и другие свойства. Получены точные двусторонние оценки для кривых ползучести и их абсолютных отклонений друг от друга и от кривых ползучести при мгновенном нагружении, доказана равномерная сходимость семейств кривых ползучести с фиксированной формой начальной стадии нагружения к кривой ползучести при мгновенном нагружении, когда длительность начальной стадии стремится к нулю.
Установленные общие свойства кривых ползучести, порождаемых линейной теории наследственности, проиллюстрированы на примерах кривых ползучести классических реологических моделей (Максвелла, Фойгта, Кельвина), трехзвенных сингулярных моделей и «фрактальных» моделей с оператором дробного дифференцирования. Проанализированы специфические особенности поведения кривых ползучести регулярных и нерегулярных моделей, а также гибридных моделей, чьи функции ползучести склеены из нескольких функций. Проведенный анализ позволяет точнее очертить арсенал возможностей и область применимости линейной теории наследственности, выявить индикаторы ее (не)применимости, удобные для экспериментальной проверки, получить новые универсальные двусторонние оценки для функции ползучести через кривые ползучести с начальной стадией нагружения, регистрируемые в испытаниях материалов, и усовершенствовать методики выбора, идентификации, настройки и верификации линейных моделей.

Ключевые слова: линейная вязкоупругость, функция ползучести, кривые ползучести, влияние начальной стадии нагружения, форма начальной стадии нагружения, длительность начальной стадии, нагружение с постоянной скоростью, двусторонние оценки, асимптотика отклонения, сходимость, затухание памяти, регулярные и сингулярные модели, модели с дробной производной.

УДК: 539.372

MSC: 74D05, 74A20

Получение: 23 апреля 2017 г.
Исправление: 11 августа 2017 г.
Принятие: 18 декабря 2017 г.
Публикация онлайн: 29 марта 2018 г.

DOI: 10.14498/vsgtu1543



Реферативные базы данных:


© МИАН, 2024