Аннотация:
Рассматривается трехмерное уравнения смешанного типа с тремя сингулярными коэффициентами, для которого в параллелепипеде исследуется задача Дирихле. Исследование поставленной задачи проводится с помощью метода разделения переменных Фурье и спектрального анализа. Для поставленной задачи с помощью метода Фурье получены две одномерные спектральные задачи. На основании свойства полноты систем собственных функций этих задач доказана теорема единственности. Решение исследуемой задачи построено в виде суммы двойного ряда Фурье–Бесселя. В обосновании равномерной сходимости построенного ряда использовались асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, которые позволили доказать сходимость полученного ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.
Ключевые слова:задача Дирихле, уравнения смешанного типа, спектральный метод, единственность решения, существование решения.