RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2017, том 21, номер 4, страницы 633–650 (Mi vsgtu1562)

Эта публикация цитируется в 1 статье

Дифференциальные уравнения и математическая физика

Уравнения Янга-Миллса на 4-многообразиях конформной связности без кручения с различными сигнатурами

В. А. Лукьянов, Л. Н. Кривоносов

Нижегородский государственный технический университет им. Р. Е. Алексеева, г. Нижний Новгород, 603600, Россия

Аннотация: Исследуются пространства конформной связности без кручения размерности 4, матрица связности которых удовлетворяет уравнениям Янга–Миллса. Здесь мы обобщаем и усиливаем результаты, полученные нами в предыдущих статьях, где угловая метрика этих пространств имела сигнатуру Минковского. Обобщение состоит в том, что здесь мы исследуем пространства всех возможных сигнатур метрики, а усиление связано с тем, что дополнительное внимание уделяется вычислению матрицы кривизны и установлению свойств ее компонент. Показано, что уравнения Янга–Миллса на 4-многообразиях конформной связности без кручения при произвольной сигнатуре угловой метрики сводятся к уравнениям Эйнштейна, уравнениям Максвелла и равенству тензора Баха угловой метрики и тензора энергии-импульса кососимметричного тензора заряда. Доказано, что в случае равенства нулю тензора Вейля уравнения Янга–Миллса имеют только автодуальные или антиавтодуальные решения, т.е. матрица кривизны конформной связности состоит из автодуальных или антиавтодуальных внешних 2-форм. При сигнатуре Минковского (анти)автодуальные внешние 2-формы могут быть лишь нулевыми. Вычислены компоненты матрицы кривизны в случае, когда угловая метрика произвольной сигнатуры является эйнштейновой, а связность удовлетворяет уравнениям Янга–Миллса. В евклидовом и псевдоевклидовом 4-пространствах приведены некоторые частные автодуальные и антиавтодуальные решения уравнений Максвелла, к которым сводятся в данном случае все уравнения Янга–Миллса.

Ключевые слова: многообразия конформной связности, кривизна, кручение, уравнения Янга–Миллса, уравнения Эйнштейна, уравнения Максвелла, оператор Ходжа, (анти)автодуальные 2-формы, тензор Вейля, тензор Баха.

УДК: 514.756

MSC: 53A30

Получение: 12 октября 2017 г.
Исправление: 27 ноября 2017 г.
Принятие: 18 декабря 2017 г.
Публикация онлайн: 28 декабря 2017 г.

DOI: 10.14498/vsgtu1562



Реферативные базы данных:


© МИАН, 2024