Аннотация:
Исследуется краевая задача для гиперболического уравнения третьего порядка с вырождением типа внутри смешанной области. Рассматриваемое уравнение в положительной части области совпадет с уравнением Аллера, которое является уравнением псевдопараболического типа. А в отрицательной части области — с вырождающимся гиперболическим уравнением первого рода, частным случаем которого является уравнение Бицадзе–Лыкова. Доказана теорема существования и единственности решения. Единственность решения задачи доказана с помощью метода Трикоми. Из функциональных соотношений, принесенных на линию вырождения порядка из положительной и отрицательной частей области, приходим к уравнению Вольтерра второго рода типа свертки относительно следа производной искомого решения. Путем применения метода интегрального преобразования Лапласа решение интегрального уравнения находится в явном виде.
Далее решение исследуемой задачи выписывается в явном виде как решение второй краевой задачи для уравнения Аллера в положительной части области и как решение задачи Коши для вырождающегося гиперболического уравнения первого рода в отрицательной части области.
Ключевые слова:краевая задача, гиперболическое уравнение третьего порядка, уравнение Аллера.