RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2018, том 22, номер 4, страницы 774–784 (Mi vsgtu1639)

Краткие сообщения

К проблеме единственности решения задачи Коши для уравнения дробной диффузии с оператором Бесселя

Ф. Г. Хуштова

Институт прикладной математики и автоматизации, г. Нальчик 360000, Россия

Аннотация: Рассматривается уравнение дробной диффузии с сингулярным оператором Бесселя, действующим по пространственной переменной, и оператором дробного дифференцирования Римана–Лиувилля, действующим по временной переменной. Когда порядок дробной производной равен единице, а особенность у оператора Бесселя отсутствует, рассматриваемое уравнение совпадает с классическим уравнением теплопроводности. Ранее для уравнения дробной диффузии с оператором Бесселя было построено решение задачи Коши и доказана теорема единственности решения в классе функций экспоненциального роста.
Построен пример, показывающий, что увеличение показателя степени в условии, гарантирующем единственность решения задачи Коши, влечет за собой неединственность решения. С помощью известных свойств функции Райта получены оценки для построенной функции. Показывается, что она, будучи не равной тождественно нулю, удовлетворяет однородному уравнению и однородному условию Коши.

Ключевые слова: уравнение дробной диффузии, оператор дробного дифференцирования, оператор Бесселя, задача Коши, единственность решения, условие Тихонова, функция Райта.

УДК: 517.955, 517.968.7

MSC: 26A33, 35K15, 35R11

Получение: 28 августа 2018 г.
Исправление: 25 октября 2018 г.
Принятие: 12 ноября 2018 г.
Публикация онлайн: 28 ноября 2018 г.

DOI: 10.14498/vsgtu1639



Реферативные базы данных:


© МИАН, 2024