Аннотация:
Рассматриваются связанные термические и динамические уравнения гемитропной термоупругой микрополярной среды относительно подлежащих определению полей перемещений, микровращений и температурного инкремента. Механизм теплопроводности предполагается термодиффузионным. Определяющие постоянные гемитропного термоупругого тела редуцированы к минимальному набору, обеспечивающему его термоупругую полуизотропность. Изучаются решения связанных уравнений в форме распространяющихся плоских волн. Определены их пространственные поляризации. Получено алгебраическое бикубическое уравнение для определения волновых чисел и установлено, что для связанной волны в действительности существуют ровно три нормальных комплексных волновых числа. Исследуется также холодная атермическая волна. Пространственные поляризации в этом случае образуют (вместе с волновым вектором) триэдр взаимно ортогональных направлений. Для атермической волны находятся (в зависимости от случая) либо два вещественных нормальных волновых числа, либо одно.