RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2019, том 23, номер 3, страницы 582–597 (Mi vsgtu1690)

Эта публикация цитируется в 5 статьях

Краткие сообщения

Устойчивость и сходимость разностных схем для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти

А. Х. Хибиев

Институт прикладной математики и автоматизации – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр «Кабардино-Балкарский научный центр Российской академии наук», г. Нальчик, 360000, Россия

Аннотация: Методом энергетических неравенств получена априорная оценка решения первой краевой задачи для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти. Построен разностный аналог дробной производной дискретно-распределенного порядка с обобщенными функциями памяти (аналог формулы L1). Исследованы основные свойства этого разностного оператора и на его основе построены разностные схемы второго и четвертого порядков аппроксимации по пространственной переменной и дробного порядка $ 2{-}\alpha_0 $ по временной переменной. Доказана устойчивость предложенных разностных схем, а также их сходимость в сеточной $ L_2 $-норме со скоростью, равной порядку погрешности аппроксимации. Достоверность полученных результатов подтверждают численные расчеты, проведенные для тестовых примеров.

Ключевые слова: дробная производная, обобщенная функция памяти, априорные оценки, уравнение диффузии дробного порядка, разностные схемы, устойчивость, сходимость.

УДК: 519.642.2

MSC: 65M06, 65N06, 65N12

Получение: 16 апреля 2019 г.
Исправление: 25 мая 2019 г.
Принятие: 10 июня 2019 г.
Публикация онлайн: 21 июня 2019 г.

DOI: 10.14498/vsgtu1690



Реферативные базы данных:


© МИАН, 2024