Краткие сообщения Дифференциальные уравнения и математическая физика
О расширении области для аналитического приближенного решения одного класса нелинейных дифференциальных уравнений второго порядка в комплексной области
Аннотация:
Ранее авторами было проведено исследование одного класса нелинейных дифференциальных уравнений второго порядка в окрестности подвижной особой точки. Доказаны: существование подвижной особой точки, теорема существования и единственности решения в окрестности подвижной особой точки. Построено аналитическое приближенное решение в окрестности подвижной особой точки. Исследовано влияние возмущения подвижной особой точки на приближенное решение. Результаты, полученные для вещественной области, были обобщены на комплексную область $|z|<|\tilde z^*|\leqslant |z^*|$, где $z^*$ — точное значение подвижной особой точки, $\tilde z^*$ — приближенное значение подвижной особой точки. В данной работе проведено исследование аналитического приближенного решения от влияния возмущения подвижной особой точки в области $|z|> |\tilde z^*|\geqslant |z^*|$ с учетом изменения направления движения по лучу в направлении к началу координат комплексной плоскости. Эти исследования необходимы в силу характера подвижной особой точки (четная дробная степень критического полюса). Полученные результаты сопровождены численным экспериментом и завершают исследование аналитического приближенного решения рассматриваемого класса нелинейных дифференциальных уравнений в окрестности подвижной особой точки в зависимости от направления движения вдоль луча в комплексной области.
Ключевые слова:подвижная особая точка, нелинейное дифференциальное уравнение, аналитическое приближенное решение, окрестность подвижной особой точки, комплексная область, апостериорная оценка.