Аннотация:
В рамках уравнений Навье–Стокса рассмотрены нестационарные осесимметричные течения однородной вязкой несжимаемой жидкости, в которых осевая и окружная скорости зависят только от радиуса и от времени, а радиальная скорость равна нулю. Показано, что скорость таких течений представляет собой сумму скоростей двух течений вязкой несжимаемой жидкости: осевого течения (радиальная и окружная скорости равны нулю) и окружного течения (радиальная и осевая скорости равны нулю). Осевое и окружное движения происходят независимо, не оказывая никакого взаимного влияния. Это позволяет расщеплять краевые задачи для рассматриваемого типа течений, содержащие три неизвестные функции (давление, окружная и осевая скорости), на две задачи, каждая из которых содержит две неизвестные функции (давление и одна из компонент скорости). При этом сумма давлений осевого и окружного течений будет давлением исходного течения. Обнаруженная возможность расщепления позволяет с использованием известных решений пополнить «запасы» осевых и окружных точных решений. Эти решения, в свою очередь, можно суммировать в различных комбинациях и в результате получать скорости и давления новых точных решений уравнений Навье–Стокса.