Краткие сообщения Механика деформируемого твердого тела
Динамическая термоустойчивость геометрически нерегулярной пологой цилиндрической оболочки под действием периодической, по временной координате, нагрузки
Аннотация:
В рамках модели типа Лява рассматривается геометрически нерегулярная изотропная пологая цилиндрическая оболочка (ГНО). За основу берется строгая континуальная модель «оболочка–ребра». Предполагается, что ГНО нагрета до постоянной температуры $\theta_0$, два противоположных края подвергаются воздействию периодической по временной координате тангенциальной нагрузке, амплитуда и частота которой известны ($p(t)=p_0 \cos \vartheta t$). Задача определения динамической неустойчивости (ДН) термоупругой системы сводится к рассмотрению сингулярной системы трех дифференциальных уравнений динамической термоустойчивости ГНО в перемещениях, содержащих слагаемые с тангенциальными усилиями в форме Брайена. Эти усилия, возникающие в оболочке при ее нагреве, предварительно определяются на основе замкнутых решений сингулярной системы дифференциальных уравнений безмоментной термоупругости ГНО. Конкретизированная исходная система уравнений преобразуется к уравнениям Матье, которые записаны в терминах классической атермической теории гладких пластин, содержащих поправки на геометрические параметры — кривизну, относительную высоту подкрепляющих элементов, их число и температуру. Определяются первые три области ДН ГНО. Проводится количественный анализ влияния геометрических параметров упругой системы и температуры на конфигурацию областей ДН и предельного значения коэффициента возбуждения.