RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2021, том 25, номер 2, страницы 241–256 (Mi vsgtu1820)

Дифференциальные уравнения и математическая физика

Первая краевая задача в прямоугольной области для дифференциального уравнения с оператором Бесселя и частной производной Римана–Лиувилля

Ф. Г. Хуштова

Институт прикладной математики и автоматизации КБНЦ РАН, г. Нальчик, 360000, Россия

Аннотация: Для дифференциального уравнения с сингулярным оператором Бесселя, действующим по пространственной переменной, и оператором дробного дифференцирования Римана–Лиувилля, действующим по временной переменной, рассматривается краевая задача в прямоугольной области с граничными условиями первого рода. Построено явное представление решения. Единственность решения доказана в классе функций, удовлетворяющих условию Гёльдера по временной переменной. Когда порядок дробной производной равен единице, а особенность у оператора Бесселя отсутствует, рассматриваемое уравнение совпадает с уравнением теплопроводности и полученные результаты совпадают с известными соответствующими классическими результатами.

Ключевые слова: уравнение дробной диффузии, оператор дробного дифференцирования, оператор Бесселя, цилиндрическая функция, функция типа Миттаг–Леффлера, первая краевая задача.

УДК: 517.95

MSC: 26A33, 35K20, 35R11

Получение: 18 августа 2020 г.
Исправление: 18 мая 2021 г.
Принятие: 24 мая 2021 г.
Публикация онлайн: 30 июня 2021 г.

DOI: 10.14498/vsgtu1820



Реферативные базы данных:


© МИАН, 2024