Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки,
2021, том 25, номер 2,страницы 303–319(Mi vsgtu1829)
Механика деформируемого твердого тела
Равновесие жестко закрепленной на внешней поверхности полой трансверсально-изотропной толстостенной сферы, находящейся под действием равномерного внутреннего давления и гравитационных сил
Аннотация:
С использованием разложения компонент вектора перемещений по окружной и радиальной координатам в ряды по полиномам Лежандра и обобщенных степенных рядов получено точное аналитическое решение задачи о равновесии жестко закрепленного на внешней поверхности толстостенного трансверсально-изотропного
центрально-симметричного полого тела, которое находится под действием равномерного внутреннего давления и гравитационных сил.
В качестве примера использования полученного аналитического решения проанализировано влияние массовых сил на характер распределения независимых инвариантов тензора напряжений в поперечном сечении тяжелой железобетонной сферы, внутренняя поверхность которой свободна от внутреннего давления.
На основе многокритериального подхода, описывающего различные механизмы исчерпания несущей способности (от растяжения или сжатия в радиальном и окружном направлениях и межслойного сдвига), определены области тяжелой железобетонной сферы, в которых может быть инициировано разрушение.
Проведено качественное и количественное сравнение полей напряжений в точках поперечных сечений толстостенных тяжелых сфер с результатами численного решения той же задачи в осесимметричной и трехмерной постановках в конечноэлементных пакетах ANSYS 13.0 и ABAQUS 6.11. Оба пакета продемонстрировали минимальное отклонение численно определенных значений инвариантов напряжений от аналитического решения в осесимметричной постановке и различие с сопоставимой погрешностью — в трехмерной.
В последнем случае представление численных результатов для напряжений и деформаций в компонентной форме привело к неожиданному эффекту — появлению существенных ошибок по сравнению с точным аналитическим решением.
Для исключения обнаруженных при определении напряженно-деформированного состояния ошибок, которые обусловлены только особенностями определения сферической системы координат в конечноэлементных пакетах ANSYS 13.0 и ABAQUS 6.11, необходимо использовать представление полученных результатов в инвариантном виде.