RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского государственного технического университета. Серия «Физико-математические науки» // Архив

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2021, том 25, номер 3, страницы 423–434 (Mi vsgtu1859)

Эта публикация цитируется в 7 статьях

Дифференциальные уравнения и математическая физика

Вторая начально-краевая задача с интегральным смещением для гиперболических и параболических уравнений второго порядка

А. И. Кожановab, А. В. Дюжеваb

a Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, г. Новосибирск, 630090, Россия
b Самарский государственный технический университет, г. Самара, 443100, Россия

Аннотация: Изучается разрешимость некоторых нелокальных аналогов второй начально-краевой задачи для многомерных гиперболических и параболического уравнений второго порядка. Доказываются теоремы существования и единственности регулярных (имеющих все суммируемые с квадратом обобщенные по С. Л. Соболеву производные, входящие в уравнение) решений. Приводятся также некоторые обобщения и усиления полученных результатов.

Ключевые слова: гиперболические уравнения, параболические уравнения, граничные условия интегрального вида, нелокальные задачи, интегральные условия, регулярные решения, единственность, существование.

УДК: 517.953

MSC: 35M13

Получение: 26 марта 2021 г.
Исправление: 20 мая 2021 г.
Принятие: 25 августа 2021 г.
Публикация онлайн: 7 сентября 2021 г.

DOI: 10.14498/vsgtu1859



Реферативные базы данных:


© МИАН, 2024