Аннотация:
Поиск методами численного моделирования оптимальных по демпфирующим свойствам конструкций связан, как правило, с большим объемом вычислений.
В то же время использование для этой цели механической задачи о собственных колебаниях конструкции позволяет оценить ее демпфирующие свойства вне зависимости от внешних силовых и кинематических воздействий, тем самым существенно уменьшив вычислительные затраты.
Результатом решения задачи о собственных колебаниях кусочно-однородных вязкоупругих тел являются комплексные собственные частоты колебаний, действительная часть которых представляет собой частоту, а мнимая — показатель демпфирования (скорость затухания).
Механическое поведение вязкоупругого материала описывается линейной теорией Больцмана–Вольтерра, в рамках которой можно представить механические характеристики вязкоупругого материала в форме комплексных динамических модулей: модуля сдвига и модуля объемного сжатия.
Как правило, данные характеристики зависят от частоты внешнего воздействия.
В данной работе представлен алгоритм, позволяющий получить численное решение задачи о собственных колебаниях в случае, когда характеристики вязкоупругого материала являются функциями частоты.
Алгоритм основан на использовании возможностей пакета прикладных программ ANSYS, а также на методе Мюллера, позволяющем эффективно решать частичную алгебраическую проблему комплексных собственных значений. Работоспособность и эффективность предложенного алгоритма продемонстрированы на примере двухслойной консольно защемленной пластинки, один слой которой выполнен из упругого материала, а другой — из вязкоупругого.
Достоверность полученных результатов подтверждается сравнением собственных частот колебаний, определенных решением задачи о собственных колебаниях такого рода конструкций, с резонансными частотами на амплитудно-частотных характеристиках перемещений из решения задачи об установившихся вынужденных колебаниях в пакете прикладных программ ANSYS.
Ключевые слова:вязкоупругость, комплексные динамические модули, собственные колебания, комплексные собственные частоты, вынужденные установившиеся колебания, резонансные частоты.