Аннотация:
Изучены краевые задачи для одномерного интегро-дифференциального уравнения соболевского типа с граничными условиями первого и третьего родов с двумя операторами дробного дифференцирования $\alpha$ и $\beta$ разных порядков.
Построены разностные схемы порядка аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$.
С помощью метода энергетических неравенств получены априорные оценки в дифференциальной и разностной трактовках, откуда следуют существование, единственность, устойчивость, а также сходимость решения разностной задачи к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы. Проведены численные эксперименты, иллюстрирующие полученные в работе результаты.
Ключевые слова:уравнение соболевского типа, дробная производная, эффект памяти, разностные схемы, априорная оценка, устойчивость и сходимость.