Аннотация:
Представлен метод определения напряженно-деформированного состояния трансверсально-изотропных тел вращения, возникающего под действием неосесимметричных стационарных объемных сил.
Поставленная задача предполагает использование понятий метода граничных состояний. Базис пространства внутренних состояний формируется с помощью фундаментальных полиномов.
Многочлен ставится в любое положение вектора смещения плоского вспомогательного состояния и по формулам перехода формируется пространственное состояние.
Множество таких состояний образует конечномерный базис, по которому после ортогонализации искомое состояние разлагается в ряды Фурье с теми же коэффициентами. Коэффициенты рядов представляют собой скалярные произведения векторов заданной и базисной объемных сил. Наконец, поиск упругого состояния сводится к решению квадратур.
Анализируются решения задач теории упругости для трансверсально-изотропного кругового цилиндра от действия объемных сил, заданных различными циклическими законами (синуса и косинуса).
Даны рекомендации по построению базиса внутренних состояний в зависимости от вида функции заданных объемных сил. Даны анализ сходимости рядов и оценка точности решения в графическом виде.
Ключевые слова:метод граничных состояний, трансверсально-изотропные материалы, объемные силы, пространство состояний, неосесимметричная деформация