Аннотация:
Рассматриваются результаты применения метода обобщённых подстановок Коула–Хопфа к интегрированию конечномерных динамических систем. Динамические системы представляются в форме матричных обыкновенных дифференциальных уравнений с заданной алгеброй матриц конечной размерности. К матричным уравнениям применяются подстановки типа Коула–Хопфа, использующие дифференцирование на алгебре в форме матричных коммутаторов с заданным элементом алгебры. Найдены рекуррентные соотношения для подстановок Коула–Хопфа. Приведены конкретные примеры точно интегрируемых динамических систем. Указан метод вычисления интегралов движения таких систем и их точных решений.
Ключевые слова:уравнения типа Бюргерса, обобщённые подстановки Коула–Хопфа, конечномерные динамические системы.