Аннотация:
Для гиперболического нелинейного уравнения общего вида ставится краевая задача в характеристическом треугольнике лишь с нелокальными краевыми условиями на всей его границе. Разрешимость задачи редуцируется к разрешимости системы трех нелинейных интегродифференциальных уравнений. Для волнового уравнения дается формула решения этой задачи, а для линейного уравнения без производных первого порядка, в частности для телеграфного уравнения, показывается ее разрешимость. Для гиперболического линейного однородного уравнения второго порядка с исчезающим инвариантом Римана в характеристическом квадрате ставится краевая задача с нелокальными краевыми условиями на его сторонах и заданием значения искомой функции в одной из его вершин. Показывается однозначная ее разрешимость.