Аннотация:
В статье рассматриваются системы, образованные с помощью оператора сдвига вида $\left(T_{\lambda _{k}}g\left(x\right)\right)_{n\in \mathbb{Z}}$ в пространстве $L^{2}\left(\mathbb{R}\right)$, где $\lambda_{n}\in \mathbb{R}$. Найдены условия на функцию $g\left(x\right)$, а также на последовательность $\left(\lambda _{n}\right)_{n\in Z}$, для того чтобы система $\left(T_{\lambda _{k}}g\left(x\right)\right)_{n\in \mathbb{Z}}$ была полной, бесселевой, фреймовой последовательностью.
Ключевые слова:бесселева последовательность, фрейм, оператор сдвига, полные системы.
УДК:517.51+517.98
Поступила в редакцию: 22.03.2011 Исправленный вариант: 22.03.2011