RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского университета. Естественнонаучная серия // Архив

Вестн. СамГУ. Естественнонаучн. сер., 2014, выпуск 3(114), страницы 20–33 (Mi vsgu348)

Математика

Редукция математической модели робота с упругими сочленениями

О. В. Видилина, Н. В. Воропаева

Самарский государственный университет, 443011, Российская Федерация, г. Самара, ул. Акад. Павлова, 1

Аннотация: Рассматривается модель $n$-звенного манипулятора с упругими сочленениями в условиях слабой диссипации. Выделяется класс сингулярно возмущенных дифференциальных систем, описывающих динамику робота. Для данного класса систем устанавливаются существование и единственность интегрального многообразия медленных движений, изучаются его свойства. Доказывается, что интегральное многообразие может быть построено с любой степенью точности в виде асимптотического разложения по степеням малого параметра. Система, описывающая движение на многообразии, может быть использована в качестве редуцированной модели исходной системы.

Ключевые слова: сингулярно возмущенные системы, интегральные многообразия, асимптотические методы, редукция.

УДК: 517.928

Поступила в редакцию: 17.02.2014
Исправленный вариант: 17.02.2014



© МИАН, 2024